Effects of wing deformation on aerodynamic forces in hovering hoverflies.

نویسندگان

  • Gang Du
  • Mao Sun
چکیده

We studied the effects of wing deformation on the aerodynamic forces of wings of hovering hoverflies by solving the Navier-Stokes equations on a dynamically deforming grid, employing the recently measured wing deformation data of hoverflies in free-flight. Three hoverflies were considered. By taking out the camber deformation and the spanwise twist deformation one by one and by comparing the results of the deformable wing with those of the rigid flat-plate wing (the angle of attack of the rigid flat-plate wing was equal to the local angle of attack at the radius of the second moment of wing area of the deformable wing), effects of camber deformation and spanwise twist were identified. The main results are as follows. For the hovering hoverflies considered, the time courses of the lift, drag and aerodynamic power coefficients of the deformable wing are very similar to their counterparts of the rigid flat-plate wing, although lift of the deformable wing is about 10% larger, and its aerodynamic power required about 5% less than that of the rigid flat-plate wing. The difference in lift is mainly caused by the camber deformation, and the difference in power is mainly caused by the spanwise twist. The main reason that the deformation does not have a very large effect on the aerodynamic force is that, during hovering, the wing operates at a very high angle of attack (about 50 deg) and the flow is separated, and separated flow is not very sensitive to wing deformation. Thus, as a first approximation, the deformable wing in hover flight could be modeled by a rigid flat-plate wing with its angle of attack being equal to the local angle of attack at the radius of second moment of wing area of the deformable wing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wing motion measurement and aerodynamics of hovering true hoverflies.

Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-spe...

متن کامل

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction ba...

متن کامل

Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover.

In the analysis of flexible flapping wings of insects, the aerodynamic outcome depends on the combined structural dynamics and unsteady fluid physics. Because the wing shape and hence the resulting effective angle of attack are a priori unknown, predicting aerodynamic performance is challenging. Here, we show that a coupled aerodynamics/structural dynamics model can be established for hovering,...

متن کامل

An Experimental Investigation of the Effects of Canard Position on the Aerodynamic Forces of a Fighter Type Configuration Model

An extensive experimental investigation is conducted to study the effect of canard position relative to the fuselage reference line on the aerodynamic forces of a fighter type configuration model. Aerodynamic forces at different flight conditions are measured in a subsonic wind tunnel. The wing and the canard have triquetrous shapes. Experiments are conducted at Reynolds number of 342209 and at...

متن کامل

Dynamic pitching of an elastic rectangular wing in hovering motion

In order to study the role of the passive deformation in the aerodynamics of insect wings, we computationally model the three-dimensional fluid–structure interaction of an elastic rectangular wing at a low aspect ratio during hovering flight. The code couples a viscous incompressible flow solver based on the immersedboundary method and a nonlinear finite-element solver for thin-walled structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 213 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2010